
1

Université de Bouira
Département d’Informatique

Module : Interactions Homme Machine (IHM)
Niveau : L3 Année : 2023-2024

TP3

➢ Interface ActionListener is used to alert whenever the user clicks on something
(button or menu item). It has only one method: actionPerformed().

• public abstract void actionPerformed(ActionEvent e);

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
. ..

JButton button = new JButton("Click Me");

button.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

Actions
}
});

➢ Interface ItemListener is used to alert whenever the user clicks on an item
(checkbox). It has only one method: itemStateChanged().

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;

…
checkBox.addItemListener(new ItemListener() {

@Override

public void itemStateChanged(ItemEvent e) {
if(checkBox.isSelected())

label.setText("Check Box is checked");
else

label.setText("Check Box is not checked");

}
});

2

➢ Interface KeyListener is used to alert any user interaction on the keyboard.

The KeyListener interface contains three functions that you must override when creating an
object from it:

• KeyTyped(KeyEvent e) function: It is called after the character that the user clicked on the
keyboard is printed.

• KeyPressed(KeyEvent e) function: It is called when the user clicks on any button on the
keyboard and before lifting his finger from it.

• keyReleased(KeyEvent e) function: Called after the user removes his finger from the button
he clicked on the keyboard.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;

textField.addKeyListener(new KeyListener() {

@Override
public void keyTyped(KeyEvent e) {

………………………….
}

@Override
public void keyPressed(KeyEvent e) {

if(e.getKeyCode() == KeyEvent.VK_ENTER)
labelResult.setText(textField.getText());

}
@Override

public void keyReleased(KeyEvent e) {
………………………….

}
});

3

➢ The Java MouseListener is notified whenever you change the state of mouse.

It is notified against MouseEvent. The MouseListener interface is found in

java.awt.event package. It has five methods.

• public abstract void mouseClicked(MouseEvent e);

• public abstract void mouseEntered(MouseEvent e);

• public abstract void mouseExited(MouseEvent e);

• public abstract void mousePressed(MouseEvent e);

• public abstract void mouseReleased(MouseEvent e);

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
…

frame.addMouseListener(new MouseListener() {
@Override

public void mouseClicked(MouseEvent e) {
mousePosition.setText(" Mouse Position: ("+e.getX()+", "+e.getY()
+")");
mouseStatus.setText(" Mouse Status: Mouse Clicked");

}
@Override

public void mousePressed(MouseEvent e) {
mouseStatus.setText(" Mouse Status: Mouse Pressed");

}
@Override

public void mouseReleased(MouseEvent e) {
mouseStatus.setText(" Mouse Status: Mouse Released");

}
@Override

public void mouseEntered(MouseEvent e) {
mouseStatus.setText(" Mouse Status: Mouse Entered");

}
@Override

public void mouseExited(MouseEvent e) {
mouseStatus.setText(" Mouse Status: Mouse Exited");

}
});

4

➢ The Java MouseMotionListener is notified whenever you move or drag mouse. It is

notified against MouseEvent. The MouseMotionListener interface is found in

java.awt.event package. It has two methods.

• public abstract void mouseDragged(MouseEvent e);

• public abstract void mouseMoved(MouseEvent e);

import java.awt.event.MouseEvent;
import java.awt.event.MouseMotionListener;

…

frame.addMouseMotionListener(new MouseMotionListener() {
@Override

public void mouseDragged(MouseEvent e) { }
@Override

public void mouseMoved(MouseEvent e) {
mousePosition.setText(" Mouse Position: ("+e.getX()+", "+e.getY() +")");

}
});

5

➢ The Interface FocusListener is used to indicate the current element that the user is

interacting with and which he can control using the keyboard.FocusListener

contains two functions that you must override when creating an object from it:

• focusGained(FocusEvent e) function: Called when the user clicks inside an

element.

• focusLost(FocusEvent e) function: It is called when the user clicks outside the

element he was working with

import java.awt.event.FocusEvent;
import java.awt.event.FocusListener;

…
FocusListener fl = new FocusListener() {
@Override

public void focusGained(FocusEvent e) {
e.getComponent().setBackground(Color.yellow);
}

@Override
public void focusLost(FocusEvent e) {
e.getComponent().setBackground(Color.white);
}

};
nameField.addFocusListener(fl);
passField.addFocusListener(fl);

6

➢ Interface WindowListener is used to alert you to any change that happens to the

window, such as when it is minimized, maximized, opened, exited, active, or

inactive.

The WindowListener interface contains five functions that you must override when

creating an object from it:

• windowOpened(WindowEvent e) function is called after the window is opened.

• windowClosing(WindowEvent e): Called while the window is closed

• windowClosed(WindowEvent): Called after the window has been closed.

• windowIconified(WindowEvent): Called after the window has been hidden by

clicking the minimize button above it.

• windowDeiconified(WindowEvent e) function is called after it has been rendered

again.

• windowActivated(WindowEvent) function: It is called if the window is active, that

is, if there is no other window or application open above it.

• WindowDeactivated(WindowEvent e) function: It is called if the window is

inactive, that is, if there is another window or application open above it.

import java.awt.event.WindowEvent;
import java.awt.event.WindowListener;
…

frame.addWindowListener(new WindowListener() {
@Override

public void windowOpened(WindowEvent e) {
JOptionPane.showMessageDialog(frame, "Event: Window Opened");
}

@Override
public void windowClosing(WindowEvent e) {
JOptionPane.showMessageDialog(frame, "Event: Window Closing");
}

@Override
public void windowClosed(WindowEvent e) {
}

@Override
public void windowIconified(WindowEvent e) {
JOptionPane.showMessageDialog(null, "Event: Window Iconified");

7

}
@Override

public void windowDeiconified(WindowEvent e) {
JOptionPane.showMessageDialog(null, "Event: Window Deiconified");
}

@Override
public void windowActivated(WindowEvent e) {
}

@Override
public void windowDeactivated(WindowEvent e) {
}

});

