
Special Situations in the Simplex Algorithm

Degeneracy

Consider the linear program:

Maximize 2x1 +x2

Subject to:
4x1 +3x2 ≤ 12 (1)
4x1 +x2 ≤ 8 (2)
4x1 +2x2 ≤ 8 (3)

x1, x2 ≥ 0 .

We will first apply the Simplex algorithm to this problem. After a couple of iterations, we
will hit a degenerate solution, which is why this example is chosen. We will then examine the
geometrical origin of degeneracy and the related issue of “cycling” in the Simplex algorithm,
with the help of the graphical representation of this problem.

After introducing three slack variables and setting up the objective function, we obtain the
following initial Simplex tableau.

Basic z x1 x2 s1 s2 s3

Variable 1 −2 −1 0 0 0 0
s1 0 4 3 1 0 0 12
s2 0 4 1 0 1 0 8
s3 0 4 2 0 0 1 8

With x1 as the entering variable, there is a tie for the minimum ratio, at R2 and R3. This
(also observed in the previous two-phase example) implies that after a pivot with either
R2 or R3 as the pivot row, the resulting tableau will have a degenerate basic variable. Let
us choose R2 (say) as the pivot row. Then, after executing a pivot, we obtain the tableau
below.

Tableau I: Basic z x1 x2 s1 s2 s3

Variable 1 0 −1/2 0 1/2 0 4
s1 0 0 2 1 −1 0 4
x1 0 1 1/4 0 1/4 0 2
s3 0 0 1 0 −1 1 0

The current basic feasible solution is (x1, x2, s1, s2, s3) = (2, 0, 4, 0, 0), where s3 is (as
expected) a degenerate basic variable. The next pivot column and pivot row will be the
x2-column and R3, respectively. After executing another pivot, we obtain the following
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tableau.

Tableau II: Basic z x1 x2 s1 s2 s3

Variable 1 0 0 0 0 1/2 4
s1 0 0 0 1 1 −2 4
x1 0 1 0 0 1/2 −1/4 2
x2 0 0 1 0 −1 1 0

Again, the current basic feasible solution is (x1, x2, s1, s2, s3) = (2, 0, 4, 0, 0). However,
the identify of the degenerate basic variable has switched from s3 to x2. Note that this
tableau happens to be optimal (independent of the phenomenon of degeneracy).

To understand what it means to have a degenerate solution, let us now refer to the graphical
representation of this problem, which is shown in Figure LP-8. Notice that three, not
two, constraint equations pass through the corner-point solution (x1, x2) = (2, 0). These
equations are: x2 = 0, 4x1 + x2 = 8, and 4x1 + 2x2 = 8. Since only two lines are needed
to define such an intersection, we see that degeneracy is a manifestation of redundancy in
information. That is, we can choose to let any pair of these equations (out of(

3
2

)
= 3

combinations) to define this intersection. For example, if we choose x2 = 0 and 4x1+x2 = 8
as the defining equations, then, since the solution to this pair of equations will automatically
satisfy equation 4x1 +2x2 = 8, the value of the slack variable associated with the inequality
4x1 + 2x2 ≤ 8, namely s3, must turn out to be 0. This accounts for the appearance of
the degenerate basic variable s3 in Tableau I. Similarly, if we choose 4x1 + x2 = 8 and
4x1 + 2x2 = 8 as the defining equations, then the inequality constraint x2 ≥ 0 will turn out
to be binding. This accounts for the fact that x2 is a degenerate basic variable in Tableau
II.

What will happen if we choose x2 = 0 and 4x1 + 2x2 = 8 as the defining equations? A
careful examination of Tableau II shows that if we choose the s2-column and R3 as the
pivot column and the pivot row, then the following tableau results after a pivot.

Tableau III: Basic z x1 x2 s1 s2 s3

Variable 1 0 0 0 0 1/2 4
s1 0 0 1 1 0 −1 4
x1 0 1 1/2 0 0 1/4 2
s2 0 0 −1 0 1 −1 0

This new tableau, again, corresponds to the solution (x1, x2, s1, s2, s3) = (2, 0, 4, 0, 0).
Notice however that the slack variable s2 associated with the inequality 4x1 + x2 ≤ 8 has
indeed replaced x2 as the degenerate basic variable.
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Recall that in the last pivot, the pivot element is a negative number, −1. This will never
occur during ordinary Simplex iterations. (Why?) Our purpose for carrying out such a
pivot is to show that there is indeed a third tableau that is associated with the corner-point
solution (2, 0).

Now, with three tableaus all corresponding to the same set of coordinates, the question
is: Is it possible for the Simplex algorithm to cycle through these (or a subset of these)
tableaus forever? Theoretically, the answer is yes. However, this happens rarely in practice,
and can in fact be avoided. Observe that in order for the Simplex algorithm to cycle, we
must repeat ourselves during the iterations. Suppose a (nonoptimal) tableau that has been
visited before is generated as the result of a pivot. The idea is to look for a different choice
for either the pivot column or the pivot row. Whenever such a choice can be found, we
simply continue the algorithm with the new choice. It turns out that repeatedly doing
this will eventually take us out of any degenerate solution. We will leave out the difficult
theoretical argument that supports this last assertion.

In terms of the mechanics of the Simplex algorithm, how does one get out of degeneracy?
We will answer this with an example. Consider a tableau that has the configuration below.

Pivot
Column RHS

a d
? ?
? ?

· · · b · · · 0 ← Degeneracy
c e ← Pivot Row
? ?
? ?

Here, we assume that: we are maximizing, the column explicitly shown on the left is the
pivot column, the entry a is negative, the entry b is nonpositive, the entry c is positive,
the column shown on the right is the right-hand-side column, the entry e is positive, and
finally the row containing c and e is the pivot row. Notice that in the row just above the
pivot row, the right-hand-side constant equals 0, which indicates that the current solution
is degenerate. However, since b is assumed to be nonpositive, we do not compute a ratio
for this row in the ratio test. (To simplify discussion, we also assume that this is the only
row with a zero on the right-hand side.) This makes it possible for a row with a positive
right-hand-side constant to become the pivot row. Now, when a pivot is performed with the
entry c as the pivot element, we will multiply the pivot row by −a/c and add the outcome
into R0. This will result in a strict improvement in the objective-function value, from d

to d + (−a/c)e. With this strict increase, we are now guaranteed never to return to this
tableau again in the remainder of the Simplex algorithm.

3



In summary, the phenomenon of cycling in the Simplex algorithm is caused by degeneracy.
While cycling can be avoided, the presence of degenerate solutions may temporarily suspend
progress in the algorithm.

Unboundedness

Consider the linear program:

Maximize 2x1 +x2

Subject to:
x1 −x2 ≤ 10 (1)

2x1 −x2 ≤ 40 (2)

x1, x2 ≥ 0 .

Again, we will first apply the Simplex algorithm to this problem. The algorithm will take
us to a tableau that indicates unboundedness of the problem. We will then examine the
geometrical origin of unboundedness with the help of the graphical representation of this
problem.

After introducing two slack variables and setting up the objective function, we obtain the
following initial Simplex tableau.

Basic z x1 x2 s1 s2

Variable 1 −2 −1 0 0 0
s1 0 1 −1 1 0 10
s2 0 2 −1 0 1 40

With x1 as the entering variable, it is easily seen that R1 is the pivot row. After executing
a pivot, we obtain the tableau below.

Basic z x1 x2 s1 s2

Variable 1 0 −3 2 0 20
x1 0 1 −1 1 0 10
s2 0 0 1 −2 1 20

Since x2 has a negative coefficient in R0, this tableau is not optimal. Another pivot takes
us to the next tableau.

Basic z x1 x2 s1 s2

Variable 1 0 0 −4 3 80
x1 0 1 0 −1 1 30
x2 0 0 1 −2 1 20

This tableau again is not optimal. However, at this point, we are unable to perform further
iterations, because as we attempt to carry out a ratio test with s1 as the entering variable,
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it turns out that there is no ratio to compute. What this means is that as we attempt
to bring s1 in as a basic variable, none of the constraints will stop us from increasing its
value to infinity. Now, as the value of s1 increases, the objective-function value will also
increase correspondingly at a rate of 4. It follows that the problem does not have an optimal
solution.

The feasible region of this problem is depicted in Figure LP-9. There, we see that the
Simplex algorithm starts with the point (0, 0), follows the x1-axis to the point (10, 0), rises
diagonally to the point (30, 20), and then takes off to infinity along an infinite “ray” that
emanates from (30, 20).

More formally, what we have is that for any nonnegative δ, the solution (x1, x2, s1, s2) =
(30 + δ, 20 + 2δ, δ, 0) is feasible. Since this solution has a corresponding objective-function
value of 80 + 4δ, we see that the problem is unbounded.

Clearly, unboundedness of a problem can occur only when the feasible region is unbounded,
which, unfortunately, is something we cannot tell in advance of the solution attempt. In
the above example, we detected unboundedness when we encountered a pivot column that
does not contain any positive entry. More generally, we can in fact declare a problem as
unbounded if any (nonbasic) column, not necessarily associated with the entering variable,
is identified to have the above-stated property at the end of an iteration. Referring back
to the initial tableau, we see that, indeed, the x2-column had this property. Therefore, we
could have concluded that the problem is unbounded at the outset. The difference is that
the algorithm would then follow the x2-axis to infinity. (Of course, another difference is the
amount of effort.)

The corresponding condition for unboundedness in a minimization problem is slightly dif-
ferent: We should look for a nonbasic column with a positive coefficient in R0 and with all
other entries nonpositive.

In most applications of linear programming, if a problem turns out to be unbounded, it
is often due to the fact that at least one relevant constraint has been left out during the
formulation stage. Therefore, one should carefully reexamine the original formulation.

Multiple Optimal Solutions

Consider the linear program:

Maximize 4x1 +14x2

Subject to:
2x1 +7x2 ≤ 21 (1)
7x1 +2x2 ≤ 21 (2)

x1, x2 ≥ 0 .
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As before, we will first apply the Simplex algorithm to this problem. The algorithm will
take us to a tableau that indicates that alternative optimal solutions exist. We will then
examine the geometrical origin behind the existence of alternative optimal solutions, with
the help of the graphical representation of this problem.

After introducing two slack variables and setting up the objective function, we obtain the
following initial Simplex tableau.

Basic z x1 x2 s1 s2

Variable 1 −4 −14 0 0 0
s1 0 2 7 1 0 21
s2 0 7 2 0 1 21

With x2 as the entering variable, it is easily seen that R1 is the pivot row. After executing
a pivot, we obtain the tableau below.

Basic z x1 x2 s1 s2

Variable 1 0 0 2 0 42
x2 0 2/7 1 1/7 0 3
s2 0 45/7 0 −2/7 1 15

At this point, since every nonbasic variable has a nonnegative coefficient in R0, the current
solution (x1, x2, s1, s2) = (0, 3, 0, 15) is optimal. However, notice that the nonbasic vari-
able x1 has a coefficient of 0 in R0. This implies that if we attempt to let x1 enter the basis,
then the objective-function value will not change. Indeed, after a pivot with the x1-column
as the pivot column, we obtain the following new tableau.

Basic z x1 x2 s1 s2

Variable 1 0 0 2 0 42
x2 0 0 1 7/45 −2/45 7/3
x1 0 1 0 −2/45 7/45 7/3

With the same objective-function value, the new solution (x1, x2, s1, s2) = (7/3, 7/3, 0, 0)
is, of course, also optimal. Note that a further attempt at a pivot in the s2-column will take
us back to the previous solution. We will therefore not pursue things further.

The feasible region of this problem is depicted in Figure LP-10. There, we see that the
Simplex algorithm starts with the point (0, 0), travels along the x2-axis to the first optimal
solution at (0, 3), and then continues on to the second optimal solution at (7/3, 7/3). Notice
that the objective-function line 4x1 +14x2 = c (for any c) is parallel to the edge that begins
at (0, 3) and ends at (7/3, 7/3). Hence, every point on this edge is optimal.

In general, if we are given two optimal solutions to a linear program, then an infinite number
of optimal solutions can be constructed. In this example, both (0, 3) and (7/3, 7/3) are
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optimal. Therefore, every point on the edge connecting these two points will also be optimal.
Formally, points on this edge are traced out by solutions of the form:

(x1, x2) = δ × (0, 3) + (1− δ)× (7/3, 7/3) ,

where δ is any value in the interval [0, 1]. As specific examples, if we let δ = 1, then we have
the point (0, 3); if we let δ = 0, then we have the point (7/3, 7/3); and if we let δ = 1/2,
then we have the point (7/6, 8/3), which is half way between (0, 3) and (7/3, 7/3).
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