Université AMO de Bouira - Faculté des sciences et sciences appliquées

Module: Programmation linéaire Filière \ Année : MI \ S5 \ 2017

Série d'exercices N°3

Exercice 01

Déterminer les bases et les bases réalisables du système suivant :

$$x_1 + x_2 + x_3 = 6$$
$$x_2 + x_4 = 3$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Exercice 02

•

Soit le programme linéaires :

$$3x_1 + 2x_2 - x_3 + 4x_4 = 8$$

$$x_1 + 4x_2 + x_3 - 2x_4 = 7$$

$$x_i \ge 0 \quad (i=1, 2, 3, 4)$$
Max $Z = 2x_1 + x_2 + 3x_3 + 2x_4$

la solution $x_2=11/5$, $x_4=9/10$ est elle :

1-de base 2- réalisable

•

Soit le programme linéaire suivant :

min
$$z = x_2 - 3x_3 + 2x_5$$

s.t.: $x_1 + 3x_2 - x_3 + 2x_5 = 7$
 $-2x_2 + 4x_3 + x_4 = 12$
 $-4x_2 + 3x_3 + 8x_5 + x_6 = 10$
 $x_j \ge 0 \quad \forall j = 1, ..., 6$

La solution optimale de ce problème est x = (0, 4, 5, 0, 0, 11).

. Donner l'ensemble des indices de base B associé à la solution optimale.

Exercice 03

Résoudre le programme linéaire suivant en utilisant l'algorithme du simplexe :

$$\max z = 5x_2 + 4x_3 + 3x_6$$
s.t.: $x_1 + 2x_2 + 3x_3 + x_5 + 2x_6 = 5$

$$4x_2 + x_3 + x_4 + x_5 + 2x_6 = 11$$

$$3x_2 + 4x_3 + x_4 + 2x_6 = 8$$

$$x_j \ge 0 \quad \forall j = 1, \dots, 6$$

Résoudre le système suivant

$$PL \begin{cases} x_1 + 2x_2 + x_3 = 3 \\ x_1 + x_2 + 5x_3 = 12 \\ x_1 + 2x_2 + 6x_3 + x_4 = 13 \\ x_{1,2,3,4} \ge 0 \\ MaxZ = x_1 + x_2 + x_3 + x_4 \end{cases}$$

Université AMO de Bouira - Faculté des sciences et sciences appliquées

Module: Programmation linéaire Filière \ Année : MI \ S5 \ 2017

Exercice 04

Résoudre le programme linéaire suivant en utilisant l'algorithme du simplexe (résoudre d'abord le problème de phase ${\rm I}$) :